Monitoring of Geological CO₂ Sequestration Using Isotopes and Perfluorocarbon Tracers Project Number FEAA-045

D. E. Graham¹, S. M. Pfiffner², T. J. Phelps², Y. K. Kharaka³, J. J. Thordsen³, and D. R. Cole⁴

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Transforming Technology through Integration and Collaboration August 18-20, 2015

Presentation Outline

- Tracers for CO₂ storage programs
- Cranfield, Mississippi SECARB project
- Conservative perfluorocarbon tracers
- Gas and isotope geochemistry
- Lessons learned from tracers in brine CO₂ storage
- Future plans

Benefit to the Program: Geologic Storage and Simulation and Risk Assessment

Provide information on physical and geochemical changes in the reservoir, ensuring CO₂ storage permanence

Facilitate a fundamental understanding of processes impacting the behavior of fluids —diffusion, dispersion, mixing, advection, and reaction— to improve storage efficiency

Ground-truth behavior of fluids and gases, CO_2 transport properties and CO_2 saturation that can be used to constrain reservoir simulation models, predicting CO_2 storage capacity & designing efficient MVA programs

Develop complementary tracer methods to interrogate the subsurface for improved CO_2 storage efficiency and permanence

- Complete geochemical and PFT analysis from 5-year Cranfield, Mississippi storage project
- Transfer technology to storage project partners
- Improve ultra-trace detection methods for PFT mixtures
- Integrate geochemical, isotope and PFT results into an advanced reservoir simulator for improved storage predictions

Candidate Tracers

(complementing hydrology and geophysics)

Brines: Native non-conservative tracers that respond to changes pH, alkalinity, electrical conductivity Cations: Na, K, Ca, Mg, ΣFe, Sr, Ba, Mn Major anions: CI, HCO₃, SO₄, F, Br Organic acids: acetate, propionate, formate, oxalate, etc. Other organics: DOC; methane, CO₂, benzene, toluene

<u>Gases</u>: Native conservative tracers or added conservative tracers Gases: N₂, H₂, O₂, CO₂, CO, CH₄, C₂ – C_{n+} Noble gas tracers: Ar, Kr, Xe, Ne, He (and their isotopes) Perfluorocarbon tracers (PFTs): PMCP, PECH, PMCH, PDCH, PTCH (SF₆)

<u>Isotopes</u>: D/H, ¹⁸O/¹⁶O, ⁸⁷Sr/⁸⁶Sr in water, DIC, minerals; ¹³C/¹²C in CH₄, CO₂, DIC, DOC, carbonates

5

Processes Impacting Tracer Signals

A combination of tracers assesses the multiple length and time scales relevant to Carbon Storage.

Benefits of PFTs & SF₆ Conservative Tracers

- Non-reactive, non-toxic, inexpensive & stable to 500°C
- Detectable at pg-fg levels
- Several PFTs can be quantified in a single analysis
- Scalable to 1000s of samples
- Different PFT "suites" assess multiple breakthroughs
 → flow regime indicator
- Complements stable isotopes and geochemistry for modeling heterogeneous flow

Cranfield, MS Wells

PFTs at Cranfield – F2 Well

PTCH Tracer Results from Cranfield

April 2010 campaign:

PTCH was added at t = 693 hr

F2 – Closer to F1, delayed breakthrough compared to F3, smaller peak areas

F3 – Further from F1, Earlier breakthrough compared to F2, larger peak areas

Radial-like flow in 2009 Multi-flow paths in 2010 with short circuits to F3 ¹⁰

Final Cranfield Campaign January 2015

- Gas and water samples for PFT, water chemistry and stable isotope analyses from the DAS site and from nearby production and separation wells
- 14 wells sampled for PFTs
- Additional samples from various CO₂ injection wells, Jackson Dome CO₂ and recycled CO₂ used for injection.

Gas collection into steel canister directly at well fitting.

Gas/water separator for gas collection. Fluids were collected into a carboy.

PFTs Present After 5 Years of Experiment

- Long-term diffusive tail (50 X longer than Frio)
- Tracer reservoir in F3 vicinity (>20,000 hr of previous inactivity)
- Revealed differential transport of SF₆ and PECH (and others)

12

PFTs Observed as Peak Area Units for the F3 Observation Well

	F3 Pre-Vent 01-13	- F3 Post Vent 01-23-	F3 Post Vent 01-26-			
PFT	15	15	15			
SF6	185,245	0	0			
PMCP	571	173	37			
PMCH	1079	428	121			
PECH	2017	1233	377			
PTCH	541	376	107			

Lessons Learned

- Long-term experiments are important (long-tail)
- Flow paths evolve in the reservoir
- Sensitive tracer detection is critical
- Suites of tracers are essential for interpreting flow
- Multiple suites of tracers are required for monitoring with repeated injections

Benefits of Stable Isotopes as Nonconservative Tracers (180/160, D/H, 13C/12C, 87Sr/86Sr)

- Naturally occurring in gases, brines, rocks
- Sensitive, established mass spectrometric methods
- Kinetic & equilibrium partitioning constrained
- Assess gas-brine-rock interaction processes
- Assess leakage from reservoir; well bore
- Complementary to gas and brine chemistries

Strontium Isotope Variation with Time

The presence of CO₂ dissolved in the Cranfield brine may have enhanced reactivity with the sandstone thus releasing some additional ⁸⁷Sr from feldspars or clays. 15

Carbon Isotopes (¹³C/¹²C) of Injected CO₂ Gas from Jackson Dome Show Good Mixing with Tuscaloosa CO₂

Simple two-component fluid mixing dominates at the DAS site No obvious evidence of CO₂ reaction with reservoir rock carbonates 16

Cranfield: Brine O and H Isotopes

Modeling of O isotope shifts in CO₂

Magnitude of oxygen isotope shift largely a function of brine/CO₂ ratio vs carbon isotope variation due to mixing of formation CO₂ with injectate $_{18}$

Effect of brine O isotope composition and temperature on CO₂ O isotopes

O isotope change in CO₂ reacted with two different fluid types at two different temperatures, 20 and 100°C.

Summary of Key Isotope Results

- Possible dual source for Sr formation brine + dissolution of sediment (more ⁸⁷Sr/⁸⁶Sr in progress)
- Mixing of CO₂ injectate and reservoir CO₂ revealed by carbon isotopes \Rightarrow ensure storage permanence, MVA
- Oxygen isotope shifts in CO₂ and brine yield estimates of CO₂/brine mass ratios complementary to RST

Incorporating Tracer Results in a Reservoir Simulator

Leverage a state-of-the-art reservoir simulator for compositional multicomponent multiphase flow

Tracers added as conservative or weakly non-conservative species, with advection-diffusion-dispersion transport

EOS compositional modeling to predict local changes in density & viscosity

Dr. Joachim Moortgat (OSU)

Incorporating Tracer Results in a Reservoir Simulator

Leverage a state-of-the-art reservoir simulator for compositional multicomponent multiphase flow

Tracers added as conservative or weakly non-conservative species, with advection-diffusion-dispersion transport

PVI = 45 %

EOS compositional modeling to predict local changes in density & viscosity

Dr. Joachim Moortgat (OSU)

Future Plans & Synergies

Appendix

Project Organization

Gantt Chart

	2015			2016				2017				
Task Description		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Sampling plan												
Initial gas-brine isotope model												
PFT comparison												
Geochem comparison												
Tech transfer update												
Technology survey												
Geochem and isotope integration												
10X PFT Implementation plan												
Brine-CO2 & PFT transport												
Tech transfer update												
Test 10X PFT enhancement												
100X PFT implementation plan												
Test 100X PFT enhancement												
Isotope simulation reactive transport												
Field test enhanced PFT analysis												
Tech transfer update												

Bibliography

DePaolo, D. J., Cole, D. R., Navrotsky, A. and Bourg, I. C. (2013, Editors) Geochemistry of Geologic CO₂ Sequestration. In: Geochemistry of Geologic Carbon Sequestration (D.J. DePaolo, D. R. Cole. A. Navrotsky and I. Bourg, eds.), *Rev. Mineral. Geochem.* 77, 539p.

DePaolo, D. J and Cole, D. R. (2013) Geochemistry of geologic carbon sequestration. An overview. *Rev Mineral. Geochem.* 77, 1-14.

Yousif K. Kharaka, David R. Cole, James J. Thordsen, Katherine D. Gans, and R. Burt Thomas, (2013) Geochemical Monitoring for Potential Environmental Impacts of Geologic Sequestration of CO₂. In: Geochemistry of Geologic Carbon Sequestration (D.J. DePaolo, D. R. Cole. A. Navrotsky and I. Bourg, eds), *Rev. Mineral. Geochem.* **77**, 399-430.

Wilkins, M. J., R. Daly, P. J. Mouser, R. Trexler, K. C. Wrighton, S. Sharma, D. R. Cole, J. F. Biddle, E. Denis, J. K. Fredrickson, T. L. Kieft, T. C. Onstott, L. Petersen, S. M. Pfiffner, T. J. Phelps, and M. O. Schrenk. 2014. Trends and Future Challenges in Sampling the Deep Terrestrial Biosphere. *Frontiers in Microbiology* 5:481.

Accomplishments and Benefits to Program

Accomplishments

- Assessing water-mineral-CO₂ interactions using geochemical modeling and isotopic ٠ signatures in baseline, during and post injection for multiple sites and campaigns.
- Determine behavior of perfluorocarbon tracer suites, breakthrough, development of reservoir storage over time at multiple sites.
- Delineate CO₂ fronts with PFT's, isotopes and on-line sensors (T, pH, Cond.). ۲
- Established methods, proven successful, inexpensive, ongoing collaborations. •
- **Procedures for** monitoring, verification and accounting (MVA) as tech transfer for • larger sequestration demonstrations complementing other sites/partnerships.
- Benefits,
- Fate, Breakthroughs, Transport, Interactions, MVA, and Technology Transfer.
- Established, successful, inexpensive, Technology Transfer collaborations.
- Lessons Learned of baseline needs and multiple natural and added tracers.
- Publications: 13 journal/book articles and a dozen proceedings papers. •
- Education: 4 Students and 2 postgraduates. ٠

Brine/CO₂ Ratios Based on Shifts in ¹⁸O/¹⁶O

Pronounced ¹⁸O/¹⁶O Shifts in Brines

O and C isotope exchange in a Gulf Coast CO₂-brine-carbonate system

Changes in C and O isotopes in CO_2 as a result of reaction-path modeling. Circles on trend lines refer to the mole ratio of $CO_2/(rock + brine)$.

Reservoir modeling of tracers

Backbone: State-of-the-art reservoir simulator for compositional multicomponent multiphase flow

Higher-order Finite Elements for high accuracy on coarse (unstructured) grids with permeability anisotropy & heterogeneity (including fractures and faults)

EOS-based phase-split computations and phase behavior

Tracers added as conservative or weakly non-conservative species, with advection-diffusion-dispersion transport

Additional complexities (reaction, hysteresis) can be incorporated if required